<span itemscope itemtype="http://schema.org/InformAction"><span style="display:none" itemprop="about" itemscope itemtype="http://schema.org/Person"><meta itemprop="description" content="Invitation from julianbrunner@gmail.com"/></span><span itemprop="object" itemscope itemtype="http://schema.org/Event"><div style=""><table cellspacing="0" cellpadding="8" border="0" summary="" style="width:100%;font-family:Arial,Sans-serif;border:1px Solid #ccc;border-width:1px 2px 2px 1px;background-color:#fff;"><tr><td><meta itemprop="eventStatus" content="http://schema.org/EventScheduled"/><h4 style="padding:6px 0;margin:0 0 4px 0;font-family:Arial,Sans-serif;font-size:13px;line-height:1.4;border:1px Solid #fff;background:#fff;color:#090;font-weight:normal"><strong>You have been invited to the following event.</strong></h4><div style="padding:2px"><span itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="Google Calendar"/></span><meta itemprop="eventId/googleCalendar" content="6qltbp06ihrl4vne814vn2im70"/><div style="float:right;font-weight:bold;font-size:13px"> <a href="https://www.google.com/calendar/event?action=VIEW&eid=NnFsdGJwMDZpaHJsNHZuZTgxNHZuMmltNzAgY2x1YjJAbWFpbGJyb3kuaW5mb3JtYXRpay50dS1tdWVuY2hlbi5kZQ&tok=NTIjc2U2ZWJlM3RvZmY0Y2g1bm11bmlibTVtOThAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbTkyYzI0NjE2NTM1ZjY1ZDRhNWY4ZTE3ZWUyZWU0ZWZhNjhkOWVlZmY&ctz=Europe%2FBerlin&hl=en&es=0" style="color:#20c;white-space:nowrap" itemprop="url">more details »</a><br></div><h3 style="padding:0 0 6px 0;margin:0;font-family:Arial,Sans-serif;font-size:16px;font-weight:bold;color:#222"><span itemprop="name">Computing Upper Bounds on Plan Lengths</span></h3><table cellpadding="0" cellspacing="0" border="0" summary="Event details"><tr><td style="padding:0 1em 10px 0;font-family:Arial,Sans-serif;font-size:13px;color:#888;white-space:nowrap;width:90px" valign="top"><div><i style="font-style:normal">When</i></div></td><td style="padding-bottom:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222" valign="top"><div style="text-indent:-1px"><time itemprop="startDate" datetime="20191030T130000Z"></time><time itemprop="endDate" datetime="20191030T133000Z"></time>Wed Oct 30, 2019 14:00 – 14:30 <span style="color:#888">Central European Time - Berlin</span></div></td></tr><tr><td style="padding:0 1em 10px 0;font-family:Arial,Sans-serif;font-size:13px;color:#888;white-space:nowrap;width:90px" valign="top"><div><i style="font-style:normal">Where</i></div></td><td style="padding-bottom:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222" valign="top"><div style="text-indent:-1px"><span itemprop="location" itemscope itemtype="http://schema.org/Place"><span itemprop="name" class="notranslate">MI 00.09.038 (Turing)</span><span dir="ltr"> (<a href="https://www.google.com/maps/search/MI+00.09.038+%28Turing%29?hl=en" style="color:#20c;white-space:nowrap" target="_blank" itemprop="map">map</a>)</span></span></div></td></tr><tr><td style="padding:0 1em 10px 0;font-family:Arial,Sans-serif;font-size:13px;color:#888;white-space:nowrap;width:90px" valign="top"><div><i style="font-style:normal">Calendar</i></div></td><td style="padding-bottom:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222" valign="top"><div style="text-indent:-1px">club2@mailbroy.informatik.tu-muenchen.de</div></td></tr><tr><td style="padding:0 1em 10px 0;font-family:Arial,Sans-serif;font-size:13px;color:#888;white-space:nowrap;width:90px" valign="top"><div><i style="font-style:normal">Who</i></div></td><td style="padding-bottom:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222" valign="top"><table cellspacing="0" cellpadding="0"><tr><td style="padding-right:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222;width:10px"><div style="text-indent:-1px"><span style="font-family:Courier New,monospace">•</span></div></td><td style="padding-right:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222"><div style="text-indent:-1px"><div><div style="margin:0 0 0.3em 0"><span class="notranslate">julianbrunner@gmail.com</span><span style="font-size:11px;color:#888"> - creator</span></div></div></div></td></tr><tr><td style="padding-right:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222;width:10px"><div style="text-indent:-1px"><span style="font-family:Courier New,monospace">•</span></div></td><td style="padding-right:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222"><div style="text-indent:-1px"><div><div style="margin:0 0 0.3em 0"><span itemprop="attendee" itemscope itemtype="http://schema.org/Person"><span itemprop="name" class="notranslate">dmnkbrgr@gmail.com</span><meta itemprop="email" content="dmnkbrgr@gmail.com"/></span></div></div></div></td></tr><tr><td style="padding-right:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222;width:10px"><div style="text-indent:-1px"><span style="font-family:Courier New,monospace">•</span></div></td><td style="padding-right:10px;font-family:Arial,Sans-serif;font-size:13px;color:#222"><div style="text-indent:-1px"><div><div style="margin:0 0 0.3em 0"><span itemprop="attendee" itemscope itemtype="http://schema.org/Person"><span itemprop="name" class="notranslate">club2@mailbroy.informatik.tu-muenchen.de</span><meta itemprop="email" content="club2@mailbroy.informatik.tu-muenchen.de"/></span></div></div></div></td></tr></table></td></tr></table><div style="padding-bottom:15px;font-family:Arial,Sans-serif;font-size:13px;color:#222;white-space:pre-wrap!important;white-space:-moz-pre-wrap!important;white-space:-pre-wrap!important;white-space:-o-pre-wrap!important;white-space:pre;word-wrap:break-word"><span>Speaker: Dominik Berger<br>Type: Bachelor's Thesis Presentation<p>Abstract:</p><p>A successful technique for solving planning problems is based on propositional satisfiability (SAT). The completeness of SAT based planning can be shown by computing a completeness threshold. The SAT-planning bound k is then set to the completeness threshold. If no plan can then be found, there exists not any plan for the given problem. One prominent completeness threshold is the recurrence diameter. The recurrence diameter is the length of the longest path without repeated states in the state space of the planning problem.</p><p>We present multiple approaches for finding the recurrence diameter of both directed graphs, as well as for planning problems. We first calculate it for directed graphs, both once by using a SAT solver and once by using an SMT solver. For planning problems, we first show an approach whereby we compute the recurrence diameter by abstracting the planning problem into a directed graph, on which we can, in general, use one of the first two methods. In practice, however, only the SMT approach will be feasible. Furthermore, we also present a way to compute the recurrence diameter of a planning problem directly using an SMT solver, therefore skipping the translation into a directed graph, and also giving the SMT solver a better structured problem, which improves the performance of the computation. Finally, we evaluate the approaches by computing the recurrence diameter for multiple directed graphs, as well as for abstractions of planning problems.</p></span><meta itemprop="description" content="Speaker: Dominik Berger
Type: Bachelor's Thesis Presentation
Abstract:
A successful technique for solving planning problems is based on propositional satisfiability (SAT). The completeness of SAT based planning can be shown by computing a completeness threshold. The SAT-planning bound k is then set to the completeness threshold. If no plan can then be found, there exists not any plan for the given problem. One prominent completeness threshold is the recurrence diameter. The recurrence diameter is the length of the longest path without repeated states in the state space of the planning problem.
We present multiple approaches for finding the recurrence diameter of both directed graphs, as well as for planning problems. We first calculate it for directed graphs, both once by using a SAT solver and once by using an SMT solver. For planning problems, we first show an approach whereby we compute the recurrence diameter by abstracting the planning problem into a directed graph, on which we can, in general, use one of the first two methods. In practice, however, only the SMT approach will be feasible. Furthermore, we also present a way to compute the recurrence diameter of a planning problem directly using an SMT solver, therefore skipping the translation into a directed graph, and also giving the SMT solver a better structured problem, which improves the performance of the computation. Finally, we evaluate the approaches by computing the recurrence diameter for multiple directed graphs, as well as for abstractions of planning problems."/></div></div><p style="color:#222;font-size:13px;margin:0"><span style="color:#888">Going (club2@mailbroy.informatik.tu-muenchen.de)? </span><wbr><strong><span itemprop="potentialaction" itemscope itemtype="http://schema.org/RsvpAction"><meta itemprop="attendance" content="http://schema.org/RsvpAttendance/Yes"/><span itemprop="handler" itemscope itemtype="http://schema.org/HttpActionHandler"><link itemprop="method" href="http://schema.org/HttpRequestMethod/GET"/><a href="https://www.google.com/calendar/event?action=RESPOND&eid=NnFsdGJwMDZpaHJsNHZuZTgxNHZuMmltNzAgY2x1YjJAbWFpbGJyb3kuaW5mb3JtYXRpay50dS1tdWVuY2hlbi5kZQ&rst=1&tok=NTIjc2U2ZWJlM3RvZmY0Y2g1bm11bmlibTVtOThAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbTkyYzI0NjE2NTM1ZjY1ZDRhNWY4ZTE3ZWUyZWU0ZWZhNjhkOWVlZmY&ctz=Europe%2FBerlin&hl=en&es=0" style="color:#20c;white-space:nowrap" itemprop="url">Yes</a></span></span><span style="margin:0 0.4em;font-weight:normal"> - </span><span itemprop="potentialaction" itemscope itemtype="http://schema.org/RsvpAction"><meta itemprop="attendance" content="http://schema.org/RsvpAttendance/Maybe"/><span itemprop="handler" itemscope itemtype="http://schema.org/HttpActionHandler"><link itemprop="method" href="http://schema.org/HttpRequestMethod/GET"/><a href="https://www.google.com/calendar/event?action=RESPOND&eid=NnFsdGJwMDZpaHJsNHZuZTgxNHZuMmltNzAgY2x1YjJAbWFpbGJyb3kuaW5mb3JtYXRpay50dS1tdWVuY2hlbi5kZQ&rst=3&tok=NTIjc2U2ZWJlM3RvZmY0Y2g1bm11bmlibTVtOThAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbTkyYzI0NjE2NTM1ZjY1ZDRhNWY4ZTE3ZWUyZWU0ZWZhNjhkOWVlZmY&ctz=Europe%2FBerlin&hl=en&es=0" style="color:#20c;white-space:nowrap" itemprop="url">Maybe</a></span></span><span style="margin:0 0.4em;font-weight:normal"> - </span><span itemprop="potentialaction" itemscope itemtype="http://schema.org/RsvpAction"><meta itemprop="attendance" content="http://schema.org/RsvpAttendance/No"/><span itemprop="handler" itemscope itemtype="http://schema.org/HttpActionHandler"><link itemprop="method" href="http://schema.org/HttpRequestMethod/GET"/><a href="https://www.google.com/calendar/event?action=RESPOND&eid=NnFsdGJwMDZpaHJsNHZuZTgxNHZuMmltNzAgY2x1YjJAbWFpbGJyb3kuaW5mb3JtYXRpay50dS1tdWVuY2hlbi5kZQ&rst=2&tok=NTIjc2U2ZWJlM3RvZmY0Y2g1bm11bmlibTVtOThAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbTkyYzI0NjE2NTM1ZjY1ZDRhNWY4ZTE3ZWUyZWU0ZWZhNjhkOWVlZmY&ctz=Europe%2FBerlin&hl=en&es=0" style="color:#20c;white-space:nowrap" itemprop="url">No</a></span></span></strong> <wbr><a href="https://www.google.com/calendar/event?action=VIEW&eid=NnFsdGJwMDZpaHJsNHZuZTgxNHZuMmltNzAgY2x1YjJAbWFpbGJyb3kuaW5mb3JtYXRpay50dS1tdWVuY2hlbi5kZQ&tok=NTIjc2U2ZWJlM3RvZmY0Y2g1bm11bmlibTVtOThAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbTkyYzI0NjE2NTM1ZjY1ZDRhNWY4ZTE3ZWUyZWU0ZWZhNjhkOWVlZmY&ctz=Europe%2FBerlin&hl=en&es=0" style="color:#20c;white-space:nowrap" itemprop="url">more options »</a></p></td></tr><tr><td style="background-color:#f6f6f6;color:#888;border-top:1px Solid #ccc;font-family:Arial,Sans-serif;font-size:11px"><p>Invitation from <a href="https://www.google.com/calendar/" target="_blank" style="">Google Calendar</a></p><p>You are receiving this courtesy email at the account club2@mailbroy.informatik.tu-muenchen.de because you are an attendee of this event.</p><p>To stop receiving future updates for this event, decline this event. Alternatively you can sign up for a Google account at https://www.google.com/calendar/ and control your notification settings for your entire calendar.</p><p>Forwarding this invitation could allow any recipient to send a response to the organizer and be added to the guest list, or invite others regardless of their own invitation status, or to modify your RSVP. <a href="https://support.google.com/calendar/answer/37135#forwarding">Learn More</a>.</p></td></tr></table></div></span></span>