<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <p>I have been very busy, but I will find time to work on it. <br>
    </p>
    <p>Viorel<br>
    </p>
    <br>
    <div class="moz-cite-prefix">On 11/23/2017 6:46 PM, Lawrence Paulson
      wrote:<br>
    </div>
    <blockquote type="cite"
      cite="mid:4D913E87-1921-451E-B75A-4E4142F77021@cam.ac.uk">
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      Whatever happened with this? The new release has been out for a
      while, and it would make sense to integrate your work now, well
      before any thought of a new release.<br class="">
      <div class="">
        <span class="Apple-style-span" style="border-collapse: separate;
          font-family: Helvetica; font-size: 11px;
          font-variant-ligatures: normal; font-variant-east-asian:
          normal; font-variant-position: normal; line-height: normal;
          border-spacing: 0px;">
          <div style="word-wrap: break-word; -webkit-nbsp-mode: space;
            -webkit-line-break: after-white-space;" class="">
            <div class="">Larry</div>
          </div>
        </span>
      </div>
      <div><br class="">
        <blockquote type="cite" class="">
          <div class="">On 27 Aug 2017, at 15:59, Viorel Preoteasa <<a
              href="mailto:viorel.preoteasa@aalto.fi" class=""
              moz-do-not-send="true">viorel.preoteasa@aalto.fi</a>>
            wrote:</div>
          <br class="Apple-interchange-newline">
          <div class="">
            <div class="">I managed to integrate the new complete
              distributive lattice into HOL library.<br class="">
              <br class="">
              The changes are these:<br class="">
              <br class="">
              Complete_Lattice.thy<br class="">
              - replaced the complete_distrib_lattice with the new
              stronger version.<br class="">
              - moved some proofs about complete_distrib_lattice and
              some instantiations to Hilbert_Choice<br class="">
              <br class="">
              Hilbert_Choice.thy<br class="">
              - added all results complete_distrib_lattice, including
              instantiations<br class="">
              of set, fun that uses uses Hilbert choice.<br class="">
              <br class="">
              Enum.thy<br class="">
              - new proofs that finite_3 and finite_4 are
              complete_distrib_lattice.<br class="">
              - I added here the classes finite_lattice and
              finite_distrib_lattice<br class="">
              and proved that they are complete. This simplified quite
              much the proofs<br class="">
              that finite_3 and finite_4 are complete_distrib_lattice.<br
                class="">
              <br class="">
              Predicate.thy<br class="">
              - new proof that predicates are complete_distrib_lattice.<br
                class="">
              <br class="">
              I compiled HOL in Isabelle2017-RC0 using<br class="">
              <br class="">
              isabelle build -v -c HOL<br class="">
              <br class="">
              and I got:<br class="">
              <br class="">
              Timing HOL (2 threads, 266.231s elapsed time, 487.094s cpu
              time, 43.344s GC time, factor 1.83)<br class="">
              Finished HOL (0:04:26 elapsed time)<br class="">
              <br class="">
              Finished at Sun Aug 27 17:41:30 GMT+3 2017<br class="">
              0:04:37 elapsed time<br class="">
              <br class="">
              But I don't now how to go from here to have these changes
              into Isabelle.<br class="">
              <br class="">
              There is also AFP. If there are instantiations of
              complete_distrib_lattice, then most probably they will
              fail.<br class="">
              <br class="">
              One simple solution in this case could be to keep also the<br
                class="">
              old complete_distrib_lattice as
              complete_pseudo_distrib_lattice.<br class="">
              <br class="">
              Viorel<br class="">
              <br class="">
              <br class="">
              On 8/26/2017 3:06 PM, Lawrence Paulson wrote:<br class="">
              <blockquote type="cite" class="">
                <blockquote type="cite" class="">On 25 Aug 2017, at
                  20:14, Viorel Preoteasa <<a
                    href="mailto:viorel.preoteasa@aalto.fi" class=""
                    moz-do-not-send="true">viorel.preoteasa@aalto.fi</a>
                  <<a href="mailto:viorel.preoteasa@aalto.fi"
                    class="" moz-do-not-send="true">mailto:viorel.preoteasa@aalto.fi</a>>>
                  wrote:<br class="">
                  <br class="">
                  One possible solution:<br class="">
                  <br class="">
                  Add the new class in Complete_Lattice.thy, replacing
                  the existing class<br class="">
                  <br class="">
                  Prove the instantiations and the complete_linearord
                  subclass later<br class="">
                  in Hilbert_Choice.<br class="">
                  <br class="">
                  On the other hand, it seems inconvenient to have the
                  Hilbert Choice<br class="">
                  to depend on so many other theories.<br class="">
                </blockquote>
                I’d prefer this provided the instantiations aren’t
                needed earlier.<br class="">
                The delay in the introduction of the Axiom of Choice is
                partly historical, but it’s worth noting how much of HOL
                can be developed without it.<br class="">
                Larry<br class="">
              </blockquote>
            </div>
          </div>
        </blockquote>
      </div>
      <br class="">
    </blockquote>
    <br>
  </body>
</html>